Pages

Monday, July 22, 2013

Direct and Inversely Proportional


Proportionality:

A quantity is said to be proportional to another quantity if change of one of the quantities is always accompanied by the change of the other. This property is known as proportionality.

Proportionality is of two types:

(i)                  Direct proportionality

(ii)                Inverse proportionality

Direct Proportionality:

A quantity is said to be directly proportional to another quantity if the change in both of them is in the same direction. This means that if one of the quantities increases then the other also increases. If one of the quantities decreases then the other also decreases.

It is denotes by the symbol a. If ‘a’ is directly proportional to ‘b’ then:

We write as a a b ==> a = k * b where k is the proportionality constant.

i.e.  a / b = k = constant à a1 / b1 = a2 / b2

Graph:

Let us consider that x a y. If we plot the values of x and y on a graph sheet we obtain the graph showing the relation between these two quantities. Generally, the graph of directly proportional quantities is a straight line. Thus by seeing the graph we can conclude the relation and proportionality between two quantities.

Inversely proportionality:

A quantity is said to be inversely proportional to another quantity if the change in both of them is in the opposite direction. This means that if one of the quantities increases then the other quantity decreases. If one decreases then the other increases.

Inverse proportionality is also uses the symbol a but the reciprocal of the second quantity is written.

If ‘a’ is inversely proportional to b then:

We write as a a 1 / b

You can see that the reciprocal of b is written to indicate inverse proportionality. We can also say that ‘a’ is directly proportional to the reciprocal of ‘b’.

If a a 1 / b à a = k / b where k is the proportionality constant.

i.e. a * b = k = constant à a1 * b1 = a2 * b2

Graph:

Let us consider x is inversely proportional to y i.e. x a 1 / y

Now plot the values of x and y on the on a graph sheet we obtain the graph showing the relation between the two quantities. Generally the graph is not a straight line but a curve. On seeing the graph we can analyze the relation and proportionality between the two quantities.

Problem:

If the volume of a gas at a given temperature is 2 liters when its pressure is 1 bar, then what will its volume when the pressure increases to 3 bars? (Volume in inversely proportional to pressure)

Sol: Given, initial volume v1 = 2 l

Initial pressure p1 = 1 bar

Final pressure p2 = 3 bars

As volume is inversely proportional to pressure we have, p1 v1 = p2 v2

Now v2 = p1 v1 / p2 = (2 * 1) / 3 = 0.66 liters (approx.)

Thus final volume the gas is 0.66l

Wednesday, July 10, 2013

Properties and Area of a Rectangle


Rectangles
For a normal 4th grader, a rectangle would mean a plane figure that has four sides. However, more precisely in geometry, a branch of math, a rectangle is a special type of a quadrilateral that has 4 right angles. It would look as shown in the picture below:

Properties of a rectangle:
1. It has four sides.
2. It has four angle and all the angles are right angles.
3. It has four vertices.
4. Each pair of opposite sides are congruent.
5. Opposite sides are parallel.
Examples of rectangles:
1. Top of a book.
2. Face of a cuboid.
3. Top of a table.
4. Front of a cupboard.
5. Etc.

The Area of the Rectangle:
The Formula for the Area of a Rectangle is as follows:
A = l * w
Where,
A = area of the rectangle,
L = length of the rectangle
W = width of the rectangle.

It is customary to denote the longer side of the rectangle as length and the shorter side as width. Another custom is to denote the horizontal sides as the length and the vertical sides as the width of the rectangle. It is shown in the picture below.


Let us now try to understand how to calculate the area of a rectangle with the help of a sample problem question.

Example 1: Find area rectangle from the figure shown below:


Solution:
From our formula for area of a rectangle we know that,
Area = A = L * W
For this problem,
L = length = 5 units and
W = width = 3 units
Therefore substituting these values of L and W into the above formula for area of the rectangle we have,
A = 5 * 3 = 15 sq units <- answer="" p="">
If instead of being given the measures of length and width, we are given the co ordinates of the vertices of the rectangle then its area can be found out as follows:

Consider a rectangle with the vertices at A (x1,y1),B  (x2,y2), C (x3,y3) and D (x4,y4) taken in clock wise direction. Therefore we know that if AB is the length of the rectangle then BC would be the width of the rectangle. The distance AB can be found using the distance formula as follows:

Length = L = AB = √[(x2-x1)^2 + (y2-y1)^2]

Similarly the distance BC can also be found using the distance formula as follows:

Width = W = BC = √[(x3-x2)^2 + (y3-y2)^2]

Both the above can be now used to find the area of the rectangle as follows:

A = L * W.

Sample problem:
Find the area of a rectangle having vertices at (3,7), (0,7), (3,-2) and (0,-2)

Solution:
First let us sketch a graph of the said rectangle.


From the picture we see that
Length = L = 3-0 = 3 and
Width = W = 7 – (-2) = 7+2 = 9

Therefore,
Area of rectangle = 3 * 9 = 27 sq units.

Tuesday, July 2, 2013

Define Absolute maximum


Optimization is one of the most vital applications of differential calculus, which guides the business and the industry to do something in the best way possible. Business enterprises ever need to maximize revenue and profit. Mathematical methods are employed to maximize or minimize quantities of interest. Absolute maximum value is when an object has a maximum value.

In mathematics, the maximum and minimum of a function, identified collectively as extrema , is the largest and smallest value that the function obtains at a point either within a given local or relative extremum (neighborhood) or on the function domain in its entirety.

A function f has an absolute maximum at point x1 , when f(x1) =  f(x) for all x. The number f(x1) is called the maximum value of ‘f on its domain. The maximum and minimum values of the function are called the extreme values of the function. If a function has an absolute maximum at x = a , then f (a) is the largest value that f that can be attained.

A function f has a local maximum at x = a if f (a) is the largest value that f can attain "near a ." Simultaneously, the local maxima and local minima are acknowledged as the local extrema. A local minimum or local maximum may also be termed as relative minimum or relative maximum.
Both the absolute and local (or relative) extrema have significant theorems linked with them Extreme Value Theorem is one of it.

To find global maxima and minima is an objective of mathematical optimization. If a function is found to be continuous on a given closed interval, then maxima and minima would exist by the extreme value theorem.
Moreover, a global maximum either have to be a local maximum within the domain interior or must lie on the domain boundary. So basically the method of finding a global maximum would be to look at all the local maxima in the interior, and also look at the maxima of the points on the boundary; and take the biggest one.
For any function that is defined piecewise, one finds a maximum by finding the maximum of each piece separately; and then seeing which one is biggest

In mathematics, the extreme value theorem signifies that if a real valued function f is continuous in the closed and bounded intermission [x,y], at that moment f should attain its maximum and minimum value, each of it at least once. That is, there prevail numbers a and b in [x,y] in such a way that:
F(a) = f(c) = f(b) for all c summation [x,y].
A related theorem is also known as the boundedness theorem which signifies that a continuous function f in the closed interval [x,y] is bordered on that interval. That is, there always exist real numbers m and M in such a way that:
m = f(c) = M for all c summation [x,y].
The extreme value theorem thus enhances the boundedness theorem by demonstrating that the function is not only bounded, but also accomplish its least upper bound as its maximum as well as its greatest lower bound as its minimum.