Pages

Tuesday, November 26, 2013

The Stem And Leaf Plots



Stem and Leaf Plot Definition:- The stem and leaf plot is used for the presentation of the quantitative data in the graphical formats. It is similar to the histogram by which the shape of the distribution of the data can be found. It is the useful tool which can be used in exploratory data analysis. This plot was popular during the type writer time. In modern computer the machine language is zero and one.


So this technique of layout of the data is obsolete in modern computers. The stem and leaf display is also called as the stem plot. The stem and leaf displays retain the data to at least two significant digits. This display contains two columns which are separated by a vertical line. The left column contains the stem and the right column contains the leaf of the data.

For example in the nub thirty two the stem is left most digits which are three and the leaf is the rightmost digit which is two is the leaf. In numb ten one is the stem and zero is the leaf of the number. In number twenty nine the leftmost digit is two and rightmost digit is nine. The number two is called the stem and the number nine is called the leaf.

To construct the stem-leaf displays the data numbs are arranged in the ascending orders.  The data value may be rounded to a particular place value that can be used as the leaf. The remaining digits to the left of the rounding digit will be used as the stem. Stem and leaf plots can be used to find the range, median, mean and media. Other statistics parameters can also be calculated with this available data.

Irregular Polygon Definition:- Polygon is the plane figure which is bounded by the finite chain of straight line segments and closed in a loop to form a closed chain or circuit. These straight line segments are known as edges or sides. The junction of the two sides is called the vertex or corner. Polygon means a shape which has many sides and angles.


A regular polygon means the shapes which have many sides of equal lengths and many angles which are equal in measurements. Irregular polygons are those in which length of each side is not equal and the measurement of angles is also not equal.  The polygon in which one or more interior angles are greater than one hundred and eighty degrees is called as concave polygon.

The polygon which has only three sides cannot be concave. The convex polygon has opposite properties to the concave. It means one or more angles of the polygon are less than one hundred and eighty degrees.

A line which is drawn through the concave polygon can intersect it more than two places. It is also possible that some of the diagonals lie outside of the polygons.  In convex polygon all diagonal lie inside the polygon.  The area of the concave polygon can be found by assuming it as other irregular polygon.

Thursday, November 21, 2013

Spherical Geometry


Spherical Geometry :- The geometrical symmetry is associated with the two dimensional surface of the sphere. It is not Euclidean. The main application of the spherical geometry is in navigation and astronomy. The plane geometry is associated with the point and lines. On the sphere, points are defined as usual sense. The straight lines are not defined as the usual sense. In spherical geometry angles can be defined between great circles, resulting a spherical trigonometry which is differ from the ordinary trigonometry in many respect; the sum of the interior angles of a triangle exceeds one hundred and eighty degrees.

Let r is the radius of the sphere. The volume of the sphere is 4/3 pi r3 cubic meter.  To find the volume of the sphere we can divide it into number of infinitesimally small circular disk of the thickness dx. The calculation of the volume of the sphere can be done as below. The surface area of the disk is equal to pi r².

Now the volume of the sphere can be found by finding the integral of the area within the limits of minus r to plus r. The formula can be derived more quickly by finding the surface area and then by integrating it within the limit of zero to r. The spherical geometry is not the elliptical geometry but shares with the geometry the property that a line has no parallel through a given point. The real projected plane is closely associated with the spherical geometry.

Midpoint Formula Geometry : - The point which is exactly at the centre of the two points is known as the middle point. This point divides a given line segment between the two equal halves. The middle point is called the midpoint in the geometry. The midpoint formula has been taken from the section formula. We have to find a point which divides a line in a particular ratio in the section formula.


In the section formula a point which divides the line in the m and n ratio is to find out. If the value of the two ratios which are represented by m and n is equal or m= n then we get the mid points at the given line. 
Let AB is a line and P is a point anywhere in between A and B. Let the coordinates of point A are (x₁, y₁) and coordinate of point B are (x₂, y₂). P is the point which lies in between points A and B has the coordinates (x, y). The coordinates on the mid-point of the line segment joining the points (x₁, y₁) and B(x₂, y₂) are given by  {(x₁+x₂)/2  ,(y₁+y₂)/2}. these are obtained by replacing l and m in the above formula. If a point P divides the given line segment  joining the points (x₁, y₁) and B(x₂, y₂) , then the coordinate of point P are given by  {(x₁+kx₂)/(k+1)  ,(y₁+ky₂)/(k+1)} These are obtained by dividing the numerator and denominator in the above expression the  replacing l/m the by k.

Wednesday, November 20, 2013

Obtuse Angle


                                                                                                          
In this article we shall learn about What is an Obtuse Angle? And also about Obtuse Scalene Triangle. Before studying about obtuse angle let us learn the definition of ‘angle’. In terms of geometry, an angle is defined as a measure between the circular arc and its radius and it’s shape is formed by two rays called as the sides (arms) of the angle and it shares an end point which is common to the two rays i.e., vertex of the angle. The units to measure an angle are degrees in sexagesimal system, radians in circular system and grades in centismal system.

We have various types of angles such like acute angles, right angles, obtuse angles, supplementary angles, straight angle, reflex angles etc. There are few properties which are listed below:

•    The measure of it can be positive or negative.
•    The measure of it can exceed 360°.
•    When we have two angles such as 30° and 390° where 390° = 360° + 30° where it means that the two terminal sides 30° and 390° belongs to same plane. Hence these two angles are called Coterminal angles.
•    It is expressed in terms of degrees and radians.

So far, we have learnt about definition of angle and its properties, now let us define obtuse angle?
It is defined as an angle whose measure will be greater than 90 degrees but less than 180 degrees. If the measure of this is not between 90 degrees to 180 degrees is not considered as an obtuse angle. Even if the measure is exactly 90 degrees is called as a right angle but not an obtuse. In other words, it is defined as the swipe between the quarter and the half rotation of a circle whose measure varies from 90 degrees to 180 degrees.

Now let us see about Obtuse Scalene Triangle. Firstly, Scalene Triangle is defined as a triangle, whose all sides are unequal and all angles are unequal. Where as an obtuse scalene triangle definition is similar to a scalene triangle where one of its angle is greater than 90°. An obtuse scalene triangle has one obtuse angle and two acute angles, where the two acute angles may be equal or unequal. If the two acute angles are equal then it is known as an obtuse isosceles triangle. There are few facts about scalene triangle such as

•    All interior angles are different.
•    The side which is opposite to the smallest angle will be the shortest side.
•    Similarly, the side which is opposite to the largest angle will be the longest side.

In order to find the area of an obtuse triangle the best formula to use is “heron’s formula”.

According to heron’s formula, the area A of a triangle whose sides are a, b, c is as follows:

A = √s(s-a)(s-b)(s-c), where a, b, c are sides of triangle and ‘s’ is the semi perimeter of the triangle. i.e., S = (a + b + c) / 2.

Monday, November 18, 2013

Polynomials


An expression with a single term is called as monomial, with two terms as binomial and with three terms as trinomial. If the number of terms is more, then such expressions are given a general name as polynomials, the word ‘poly’ means ‘many’. So it can also be written as poly-nomial to emphasize the meaning. Therefore, a poly-nomial is an expression that contains a number of terms consisting variables with constant coefficients. The terms of expression are usually arranged in descending order of the variable powers. Since a constant can also be expressed with the variable power as 0, a constant term can also be a part of a poly-nomial.
But as per convention in algebra, the definition of a polynomial includes certain restrictions. A polynomial can be built up with variables using all operations except division. For example, x3 – (2x + 3)/(x) + 7 cannot be called as a polynomial. However, this restriction applies only division by a variable and not for division by any constant, because such divisions can be considered as equivalent to fractional coefficients. The other restriction is that the exponents of the variables can only be non-negative integers.

A polynomial is generally an expression but acts as part both in equations and functions and such equations and functions are named with prefix ‘poly’ in general. In fact we convert a polynomial function to an equation while attempting to find its zeroes. Therefore, it is imperative to know how to factor a polynomial so that the zero product property can be used to determine the solutions. Using the zero product way is the easiest way to find the solutions of the variables.

Polynomial equations with a single variable with degrees 1 and 2 can easily be solved and the latter type is more popularly known as ‘quadratic’ equation. Mostly quadratic equations are possible to solve by factoring but even otherwise it can be done by using the quadratic formula. But equations with higher degrees are not all that easy to solve. But thanks to the great work by the mathematicians, there are ways to do that. Let us see some of the helpful concepts enunciated by the mathematicians.

As per fundamental theorem of algebra, the number of roots (the number of solutions of variables when equated to 0) of a polynomial is same as the degree of the same. This concept guides us to do the complete solution. We must also be aware that in some cases the solutions or some of the solutions may be imaginary. To get an idea on this, Descartes’s rule of sign changes helps. As per this rules we can figure out the number of real solutions, both positive and negative. Subsequently we can figure out the imaginary solutions with the help of fundamental theorem of algebra.

The rational zero theorem helps us to know what are the possible zeroes of a function. By a few trials, we can figure out a few zeroes and can reduce the polynomial to the level of a quadratic. Thereafter, the remaining zeroes can easily be figured out.

In addition, these days there are many websites advertising as ‘Factor Completely Calculator’ to help us in finding the solutions of a polynomial.

Friday, November 15, 2013

Correlations



Zero Order Correlation :- Zero order correlation means there is no correlation between the two quantities. They vary independently.  If classes in one variable are associated by the classes in the other, then the variables are called correlated. The correlations is said to be perfect if the ratio of two variable deviations is constant. Numerical measure of correlation is called co- efficient of correlations. A group of n individuals may be arranged in the order of merit with respect to some characteristics.

The same group would give different order for different characteristics. Consider order corresponding to two characteristics A and B. The correlations between these n pairs of ranks is called rank correlation in characteristics A and B for the group of individuals.  When the variation of the value of one variable becomes the cause of the variation of the value of other variable then it is called the correlation between the two variables. When the variation between two quantities is directly proportional then it is called positive correlations. It means when one variable increases other also increases or when one variable decreases other variable also decreases.

When the variation between two quantities is indirectly proportional then it is called negative correlations. It means when one variable increases other decreases or when one variable decreases other variable increases. For example the production of any quantity is indirectly proportional to the cost of that quantity. When the temperature increases the charge of the electricity bill also increases. This is the example of positive correlations.

On the other hand during the summer season the length of night hours decreases. It means the day hours are increasing and night hours are decreasing. During the cold season the day hours are decreasing whereas the night hours are increasing. There is a negative correlation between the day and the night hours. The reception of the radio signals is indirectly proportional to the distance from the transmitter. The reception near the transmitter is better than the reception at a distance. As the distance between the transmitter and the receiver increases the signal strength in the receiver decreases. It means the signal strength is indirectly proportional to the distance from the transmitter.

This is an example of the negative correlation. Zero order correlation means there is no correlation and all the quantities have their own graph.

Correlation Equation: - Correlation equations are written to find the order of correlations. We can find the perfect positive correlation, negative correlation or zero order correlations.  The numerical measure of correlation is called co- efficient of correlation and is defined as
r = (∑XY)/(n σx σy ) =(∑XY)/√(∑X² ∑Y²), where X and Y are the deviation from the mean positions.

Deviations are used to find the lower and upper bound of that quantity. Let a resistance value is written as 200 ± 5%.

The lower value of the resistance is equal to 190 and upper value is 210 ohm.
σ²x=(∑x²)/n  ,   σ²y=(∑y²)/n

Where, X = deviation from mean, ¯x=x-¯x

Y = deviation from mean, ¯y=y-¯y
σ_(x =  Standard deviation of x series )
σ_(y =  Standard deviation of y series )
n = number of values in two variables

We can also use the direct Method by substituting the value of σ_(x ) and  σ_(y ) in the above mentioned formula.

r = (∑XY)/(n σx σy ) = (∑XY)/√(∑X² ∑Y²)          or (n∑xy- ∑x∑y)/√(n∑x²-(∑x )²4 ×{n∑y²-∑x²}

Where r is the coefficient of correlation which can be used to find the rank of two quantities.

Thursday, November 14, 2013

Vectors


In this section we are going to understand the basic concept of vectors and we will see a very important operation that can be done on vectors which is cross product. 

Let us see what are vectors first.Vectors are used to represent quantities where magnitude and direction both are essential to define a quantity properly. A vector hence represents magnitude and direction of a quantity. For example quantities like velocity and acceleration needs to be defined with magnitude and direction as well. A velocity of 5 km/hr due east represents that the object is moving with a speed of 5 km/hr in east direction. This means that velocity is a vector quantity. 

A vector is denoted graphically by an arrow where the head of the arrow represents the direction of the vector and its length represents the magnitude of the vector. The length of a vector is used for comparing magnitude of 2 or more vectors. A vector with shorter length will have smaller magnitude than other vectors. 

A vector a can be represented in 3 dimensional space as:
 a= a1i+a2j+a3k

Here i, j and k are unit vectors in the x, y and z direction respectively. 

Let us see how cross product can be performed on the vector  Cross product is also known as vector product. This is due to the fact that the result after the product is also a vector. It is a binary operation on 2 vectors in 3 D space. The resulting vector is perpendicular to both the vectors and thus it is perpendicular to the plane in which initial vectors lie. 

If the direction of the two vectors is same or they have zero magnitude or length, then the cross product of the two vectors results zero. The magnitude of the cross product vector is equal to the area of the parallelogram which has the two vectors as its sides. If the two vectors are perpendicular and form a rectangle, then the resulting magnitude will be the area of rectangle i.e. product of lengths of the vectors. 

The operation of cross product is denoted by ×. If the two vectors are ‘a’ and ‘b’ then the cross product of the two vectors is denoted as a×b. Note that a×b is not equal to b×a. The resulting vector of this cross product denoted by c is a vector that is perpendicular to both the vectors. Its direction can be given by using right hand rule. Formula for Cross Product of Two Vectors is given as:
a×b=|a||b|sinӨ n

Here Ө is the smaller angle between the vectors a and b. |a| and |b| denotes the magnitude of the vectors a and b respectively. n here represents the unit vector perpendicular to the plane of a and b. Its direction can be given by right hand rule. The right hand rule says that if a×b is the cross product that you are calculating then role your fingers of right hand from vector a to vector b, the direction of your thumb will give the direction of resulting vector as shown below:




If the vectors a and b are parallel to each other, then the cross product of then is a zero vector as sin0 = 0
Cross product is considered as anti commutative. This means that a×b = -(b×a) 

Tuesday, November 12, 2013

Algebra Word Problems


In the field of mathematics where many forms are present algebra is one such form that deals with the basic concepts of Mathematics. We all know that Maths is a game of mathematical operations, so to deal with addition, subtraction, multiplication, division with the known and unknown values of the variables is known as algebra. In a simple way to say is that when we play computer games then we deal with jumping, running or finding secret things and in Maths we play with letters, numbers and symbols to extract the secret things. Now let’s see what is included in algebra.





Get easy steps to solve Algebra Problems (click here)


WHAT IS THERE IN ALGEBRA?
1. Algebraic terms – Algebraic terms are those terms which are infused with the values of variables. For example 3a.
In this example 3 is the numerical coefficient and a is the variable. The main work of numerical coefficient is also to deal with + 3 or – 3 of the variable.

2. Algebraic expressions – Algebraic expressions deal with a logical collection of numbers, variables, positive or negative numbers in the mathematical operations. For example we can write an expression – 3a + 2b.

3. Algebraic equations – Algebraic equations refer to the equivalency of expressions considering both the left hand side and the right hand side. For example an equation is x – 35 = 56k2 + 3. Over here both left hand side and right hand side are dealing with expression. If both the expressions are equal then that is said to be an equation.

ALGEBRA WORD PROBLEMS

The main part in Algebra is to solve the word problems, which we also did in Pre Algebra Word Problems.  It can be harder if you don’t think and do it but it can be easy if you think and do it. If we say in English how are you and the simple answer to the question is I am fine which can be simply understood but to convert the English language in to the language of maths requires certain techniques. You need to practice a lot with proper understanding of the translations. Let’s go step by step.


1. First of all read the entire word problem carefully. Make it a point that we should not start solving the problem by just reading half of a sentence. Read it properly so that you can gather the information that what you have and what you still need to have.

2.  Then, pick the information so that it can be changed into certain variables. Some might be known and some might be unknown. If required then draw pictures and symbols in the rough work so that you can deeply understand the problem without leaving any loopholes.

3. Note the key words as for different mathematical operations there are different key words –

a) Addition – increased by, total of , sum, more than, plus
b) Subtraction – decreased by, minus, less than, fewer, difference between
c) Multiplication – of, times. Multiplied by, product of, increased or decreased by the factor of
d) Division – per, out of, quotient
e) Equals -  is, gives, yields, will be



4. After going though these expressions carefully you can solve various word problems logically. Limit Problems are part of Calculus.

Friday, November 8, 2013

Rational Inequalities


Rational Inequalities : - The rational expressions are written in the P(x)/q(x) form where p(x) and q (x) are the polynomials i.e p(x), q(x)∈z(x), and q(x)≠0 are known as rational functions. the set of rational function is denoted by Q (x).

Therefore Q(x) = (p(x))/(q(x)) (where p(x), q(x) ∈z(x) and q(x) ≠0. for, if any a(x)∈z(x), then we can write a(x) as  ( a(x))/1, so that a(x)∈z(x)  and therefore,(a(x))/1  ∈Q(x);i.e  a(x)∈Q(x). The rational function example is given below.   

(2x+4)/(x²+5x+8)>0
(ax+b)/(cx+d)<0 p="">
Rational inequalities means the left hand side is not equal to the right hand side of the equation. The inequalities are associated with the linear programming.  The step by step procedure to solve the inequalities is given here. 

The very first step to solve the inequality problems is to write the equation in the correct form. There are two sides in the equation, left hand side and the right hand side. All the variables are written in the left hand side and zero on the right hand side. The second step is to find the critical values or key. To find this we have to keep the denominator and the numerator equal to zero.

The sign analysis chart is prepared by using the critical values. In this step the number line is divided into the sections. The sign analysis is carried out by assuming left hand side values of x and plugs them in the equation and marks the signs. Now using the sign analysis chart find the section which satisfies the inequality equations.

To write the answer the interval notation is used. Let us solve an example (x + 2) / (x² – 9) < 0. Now put the numerator equal to zero, we get x = -2. By putting the denominator equal to zero we get x = +3 and x = -3.  Mark these points on the number line. We get minus three, minus two and plus three on the number line.
Now try minus four, plug the value of x equal to minus four we get – 0.286.

Plug x equal to minus 2.5 we get + 0.1818. Now plug 2 in the equation we get minus zero point eight.
Now we try x equal to plus four which is at the right hand side of the number line. We get plus 0.86. The sign is minus, plus and plus sign. The equation is less than zero. To get less than zero we need all the negative values of the equation.

For x equals to plus three and minus three the equation is undefined. For x equals to minus two the equation is zero. The equation is satisfied by the value of x which is less than minus three. Therefore the answer which is the solution of the equation is minus infinite to minus three.

Rational Expressions Applications : - The equations which do not have equal sign are called the expression. The expressions are used to simplify the equations. The expressions are written to form the conditions of the problems.

According to the direction of the question the expressions are formed to solve a problem.

Wednesday, November 6, 2013

Set Operations


Set Operations: - The collection of the distinct objects is called the sets. For example the number 5, 7 and 11 are the distinct object when they are considered separately. Collectively they can form a set which can be written as [5, 7, 11]. The most fundamental concept of the mathematics is the sets.  The objects which are used to make the sets are called the elements. The elements of the sets may be anything, the letters of the alphabet, people or number. The set are denoted by the capital letters.  The two sets are equal when they have equal elements. The set can be represented by two methods, roster or tabular form and the sets builder form. In the roster form the elements are separated by commas. For example a sets of positive and odd integers less than or equal to seven is represented by {1, 3, 5, 7}.

The set of all the vowels of the alphabet is {a, e, I, o, and u}. The sets of the even numbers are {2, 4, 6,}. The dots indicate that the positive even integers are going to infinite. While writing the set in the roster form the element must be distinct. For example the set of all the letters in the word “SCHOOL” is {s, c, h, o, and l}. In the set builder form all the elements of the sets have the common property which is not possessed by any element which is outside of the set. For example vowels have the same property and can be written as {a, e, I, o, and u}. The set in the set builder form can be written as V = {x; x is a vowel in the English alphabet}.  A = {x; x is the natural number and 5 < x < 11}. C = {z; z is an odd natural number}.

Operations on Sets: - Like the mathematical operations, there are number of operations which are carried out by the sets. We will study them one by one. Union of sets is the union of the all the elements of a set and all the elements of the other  taking one element only once. Let A = {2, 3, 4, 5} and B = (4, 5, 6}. Therefore the union  of the two sets is written as A ∪B  = {2, 3, 4, 5, and 6}. Intersection of two sets A and B is the set of all elements which are common in both the sets. If the intersections of the two sets are equal to null then the set is called the disjoint set.

The difference of sets A and B can be defined as the A – B. It is equal to the elements which belong to set a and the element which does not belong to the set B. The operation on the sets such as union and intersection satisfy the various laws of the algebra such as the associative laws, the commutative laws, idempotent laws, identity laws, distributive laws, De Morgan’s laws, complement laws and involution law. These all the laws can be verified by the Venn diagram. 

Tuesday, November 5, 2013

Dispersion Statistics


Measures of Dispersion : - The dispersion is also known as the variability is the set of constant which would in a concise way explain variability or spread in a data. The four measures of dispersion or variability are the range, quartile deviations, average deviation and the standard deviation. The difference between two extreme observations in the given data is known as the range. It is denoted by R. In frequency distribution, R = (largest value –smallest value). It is used in statistical quality control studies rather widely. Median bisects the distribution. If we divide the distribution into four parts, we get what are called quartiles, Q(1 ),Q2 (median) and Q(3.)

The first quartile Q(1,) would have 25 % of the value below it and the rest above it; the third quartile would have 75% of values below it. Quartile deviation is defined as, Q. D.  = 1/2  ( Q3-Q1). If the average is chosen a, then the average deviation about A is defined as A.D. A.D. (A) = 1/n ∑|(xi- A)|  for discrete data. The Standard deviation is also called as the Root mean square deviation. The formula for the standard deviation is given as Standard deviation,σ=√(1/n ∑(xi- x ̅)^2 ) for discrete data.

The Square of the standard deviation is known as the variance. It is denoted by the square of sigma. Out of these measures, the last σ is widely used as a companion to x ̅ on who is based, when dealing with dispersion or scatter. Measure of dispersion is calculated for the data scattering. Deviation means how a value is deviated from it mean or average value. The mean of the two groups of the data may be same but their deviation may be high.

Central Tendency Measures : - The central tendency measures are also called the statistics central tendency. The clustering of data about some central value is known as the frequency distribution. The measure of central tendency is the averages or mean. The commonly used measures of central values are mean, Mode and median. The mean is the most important for it can be computed easily. The median, though more easily calculated, cannot be applied with case to theoretical analysis. Median is of advantage when there are exceptionally large and small values at the end of the distribution. The mode though easily calculated, has the least significance. It is particularly misleading in distributions which are small in numbers or highly unsymmetrical. In symmetrical distribution, the mean, median and mode coincide.

For other distributions, they are different and are known to be connected by empirical relationship. Mean – Mode = 3 (mean – median). The sum of the values of all the observations divided by the total number of observations is called the mean or average of a number of observations.  The value of the middle most observations is called the median. Therefore to calculate the median of the data, it is arranged in ascending (or descending) order. The observation which is found most frequently is known as mode.

The central tendency measures and the variability or dispersion are used in the statistical analysis of the data.