Pages

Showing posts with label exponential function properties. Show all posts
Showing posts with label exponential function properties. Show all posts

Thursday, September 13, 2012

Exponential Function an Introduction



An Exponential Function is a function which involves exponent which is the variable part rather than the base as in any normal function. For instance f(x)= x^3 is a function and an exponential function is something like g(x)= 3^x, here the exponent or the power is a variable (x) and the fixed value is the base (3). So, the definition of Exponential functions can be given as a function whose base is a fixed value and the exponent a variable. Example: f(x) = 5^x, here the base 5 is fixed value and the exponent ‘x’ is the variable.
In general, we can define Exponential Functions as a function which is written in the form ‘a^x’ in which ‘a’ is the base which is a fixed value or constant (‘a ‘not equal to 1) and ‘x’ the variable which is any real number. The most common exponential function we come across in math is e^x which is known as the Euler’s number.
Let us now take a quick look at the Exponential Function Properties. Consider the Exponential function f(x) = b^x for which the properties are as follows:
The domain of the exponential function consist of all real numbers
The range is the collection of all positive real numbers
When b is greater than 1 then the function is an increasing function also called exponential growth function and when b is less than 1 then the function is a decreasing function also called exponential decay function
The other properties that an exponential function satisfy are,
1. b^x.b^y = b^(x+y) [when bases are same and a multiplication operation then we can add the powers]
2. b^x/b^y = b^(x-y)[when bases are same and a division operation then we can subtract the powers]
3. (b^x)^y = b^(xy) [when a base is raised to a power x and raised to whole power y then we can multiply the powers]
4. a^x.b^x= (a.b)^x [when bases are different with the same power and a multiplication operation then we can multiply the bases whole raised to power]

We come across a function called an Inverse Exponential Function; this is nothing but a logarithm function.  We know that the exponential function is written in the form f(x) = b^x, to find the inverse of a given function we need to interchange x and y and solve for y. By interchanging we get x = b^y  and then solving for y gives us y = log x (base b) which is a logarithm function.