Showing posts with label standard deviation of the mean equation. Show all posts
Showing posts with label standard deviation of the mean equation. Show all posts
Wednesday, August 22, 2012
Standard Deviation of Mean in a nutshell
Standard deviation of Mean is the measure of the spread of the data about the mean value. If the standard deviation is low it shows that the values of the data are not spread out much and if the standard deviation is high it shows that the values of the data are spread out. At times we come across data which has the same mean but different range; to compare the sets of data standard deviation is very useful. The average squared deviation from the mean is called the Variance. The square root of variance is the Standard Deviation of Mean. It is a statistical measure to know how the data is spread in the distribution, in simple words statistical measure of dispersion. Standard Deviation Means is also called the Mean of the Means.
In a population Variance is given by the formula: sigma^2 =summation[x – mu]^2/n
Where, x is each value in the data, mu is the mean of the data, n is the total number of values in the data. Usually variance is estimated from a sample in a population. Variance calculated from a sample is given by the formula: sigma^2 = summation[x – x bar] ^2/ (n-1), here, x is each value from the sample, x bar is the mean of the values in the sample; n-1 is one less than the total number of values in the sample. One Standard Deviation of the Mean is given by sigma= sqrt [summation[x – x bar] ^2/ (n-1)]
Standard Deviation of the Mean Equation
The equation or the formula to be used to calculate the standard deviation depends on whether the data is grouped or non-grouped. For example, given data, 42, 35, 48, 53, 47 is a non-grouped data.
In such a case, the standard deviation of the mean is calculated using the equation:
sigma = sqrt [summation (x- x bar) ^2/ (n-1)] where sigma is the standard deviation, (x-x bar) ^2 is the square of the deviations of the data values and n is the total number of values. Let us consider the data given below
Hours of components Frequency
300-400 13
400-500 25
500-600 66
600-700 58
700-800 38
Understanding statistics problems is always challenging for me but thanks to all math help websites to help me out.
The data is a grouped data, here the standard deviation of the mean is estimated using the equation given by, sigma = sqrt [summation f(x-x bar) ^2/summation (f)] where sigma is the standard deviation, f is the frequency, x is each value of the data, x bar is the mean of the data values, summation is the sum of.
Subscribe to:
Posts (Atom)